

Low Cost SiO_x-Graphite and Olivine Materials

K. Zaghib

Hydro-Québec (IREQ), 1800 Lionel-Boulet Varennes, QC, Canada, J3X 1S1

> DOE-BATT Review Meeting May 18 – 22, 2009

> > Project ID: es_19_zaghid

Overview

Timeline

Start date: March 2006

End date: February 2010

• 70% completed

Budget

- Total Project Funding
 - DOE: \$992K
- FY09 funding \$365K
- FY08 funding \$250K

Barriers

- Low energy
- Poor cycle/calendar life

Partners

- V. Battaglia, V. Srinivasan (LBNL)
- J. Goodenough (U. Texas)
- P. Rotch (SNL)
- C. Julien-A Mauger (U. Paris 6)

Outline

> PURPOSE OF WORK

- Synthesize and evaluate manganese phosphate cathode material.
- Replace graphite anode with an alternative material that meets the requirement for low cost and high energy.
- Continue development of binders for the cathode and alternative anode to understand and improve the properties of the SEI layer.

BARRIERS

Low energy and poor cycle/calendar life

> APPROACH

- Develop an appropriate method to synthesize LiMnPO₄ (HT, S-State, Molten).
- Fabricate electrode coatings based on low-cost SiO_x-graphite and olivine.
- **Evaluate SiO_x-graphite with different binders (PVDF, SBR, PEG, PVA and polyglycidol).**

Approach

- HQ efforts in the BATT program to investigate and improve SEI layers on alternative anodes include several tasks:
 - o prepare laminate anode films and powders, and supply them to investigators in Topic 3a involved with SEI analysis using different techniques.
 - o utilize *in-situ* impedance measurements, *ex –situ* and *in-situ* SEM to investigate the SEI layer on the anode.
 - o study the effect of additives on the SEI layer
- Continue effort to identify benefits of WSB (SBR, PEG, PVA and polyglycidol) compared to PVDF in new anode and cathode materials
- Investigate performance of alternative high-capacity anode and Mnbased olivine materials in laboratory cells
 - prepare laminate cathode films and powders and supply them to BATT investigators for evaluation

Li/graphite cell, Electrolyte with Additives

Discharge/Charge: C/24

1M LiPF₆-EC-DEC

Graphite	SNG12		OMAC15	
Additives	1 st CE (%)	Qrev (mAh/g)	1 st CE (%)	Qrev (mAh/g)
No	85	369	93	358
2%VC	86	366	92	355
2%VEC	93	345	92	321
1%VC + 1%VEC	93	336	87	352

■ The reversible capacity of both graphites was reduced with additives in the electrolyte.

Institut de recherche

SiO_x Alternative Anodes for Li-Ion Cells

SiO_x Characteristics

- XRD of SiO showed mainly amorphous structure
 - Surface of SiO covered with fiber-like carbon
- Nano-domains observed in SiO:Si/SiO₂ particles

Surface Morphology

Cross-Section
Institut de recherche

Li/Electrolyte/SiO_x

Binder:WSB

Discharge/Charge: C/24

1M LiPF₆-EC-DEC

■ Comparable coulombic efficiency with SiO_x mixed with graphite

	Disch. Cap.	Chg. Cap.	Ah. Eff.
	(mAh/g)	(mAh/g)	(%)
SiO _x	1338	1118	84
$SiO_x:Gr(1:1)$	980	816	83

Li/Electrolyte/SiO_x-graphite (1:1)

Discharge/Charge: C/24 1M LiPF₆-EC-DEC

Disch. Cap. Chg. Cap. Ah. Eff. 1st / 2nd 1st / 2nd 1st / 2nd

PVDF 642 / 541 472 / 394 74 / 73

WSB 919 / 817 778 / 778 85 / 95

- The electrodes with WSB binder have better performance than those with PVDF.
- Low reversible capacity and CE with PVDFcontaining electrode.

SiOx-Graphite for samples for Ex-Situ SEM

Local Chemical Analysis: Discharge at 0.8 and 0.5V

- O and F was not detected at the surface of graphite or SiO, C peak was detected at the SiO surface (0.8V).
- Start detecting some O and F was at different locations on the surface of graphite (0.5V)

Local Chemical Analysis: Discharge at 0.2 and 0.0V

- Some O and F was found at different locations on the surface of graphite (0.2V)
- Strong peaks for O and F observed, confirming a thicker SEI layer for both C and SiO was present C peak was detected at the SiO surface (0,0V).

Local Chemical Mapping: discharge at 0 V (1.5 cycles); (8309-F)

Institut de recherche

Cycling: SiO_x/Graphite in Ionic Liquid and EC-DEC

- With polymer-IL(LiFSI), SiO_x-Gr maintain 70% initial capacity
- After 200 cycles, 400 mAh/g still exceeds graphite capacity

- With EC-DEC-LiPF₆, SiO_x-Gr shows only 335 mAh/g achieved.
- The reversible capacity is low at C/4, < graphite capacity.

LiMnPO₄ Cathode Preparation

- ☐ LiMnPO₄ material synthesis techniques:
 - ► Microwave, Molten State and Polyol
 - > Hydrothermal process
 - **♦ Carbon coated:** ~ 2%
- Electrode:
 - **►** Li MnPO₄ (from hydrothermal synthesis)
 - > Composition: 5% VGCF, 10% carbon black, 10% PVDF

XRD of LiMnPO₄

SEM Images: LiMnPO₄ (923A)

- Powder particles are formed by grain agglomerates
- Most grains <1 µm but small fraction ~100 nm
- Grains are slightly plate-like.

Institut de recherche

TEM Images: LiMnPO₄/C (923AC)

- •Grain sizes vary from less than 100 nm to greater than 500 nm.
- Small grains located at grain boundaries.

TEM Images: LiMnPO₄/C (923AC)

- Lattice images and defects in the grain
- Carbon-coated layer is ~3 nm
- Non-uniform coating of carbon due low catalyst effect of Mn.

Institut de recherche

LiMnPO₄ Cathode Material

	Cap. (CC) mAh/g	Cap. (+ Floating) mAh/g	Eff. (%)
Charge1	46.0	66.6	
Disch1	33.4		50.0
Charge2	25	39.6	
Disch2	39		98.5

Rate:C/24

Floating: 10 h

Temperature: 25°C

1M LiPF₆-EC-DEC

- -The first charge at 4.5 V gives a capacity of 46.6 mAh/g, and 66.6 mAh/g after 10 h float on charge.
- -The second cycle gives 39 mAh/g reversible capacity, with high coulombic efficiency of 98.5%.
- Only 33% Li is reversibly intercalated at 25°C.

LiMnPO₄ Cathode Material

	Cap. (CC) mAh/g	Cap. (+ Floating) mAh/g	Eff. (%)
Charge1	158	188	
Disch1	156		89
Charge2	150	168	
Disch2	147		86
Charge3	142	160	
Disch3	145		91

Temperature: 60°C 1M LiPF₆-EC-DEC

- The first charge at 4.5V gives a high capacity of 159 mAh/g, and 188mAh/g after 10 h float.
- The reversible capacity in the 3rd cycle was 145 mAh/g
- Better performance at 60°C related to improvement in the ionic conductivity.

LiMnPO₄ Cathode Material

Disch:1C

Charge: C/4 + float

Temperature: 60°C

1M LiPF₆-EC-DEC

- Some capacity fading was observed, float charge at 60°C accelerates capacity loss.
- About 80 mAh/g can be extracted at C/4 at 60°C.

Dual Materials and Multilayer Electrodes

- **■** Low-cost mixed powders:
 - \rightarrow LiMnPO₄-LiMn₂O₄ (20%/80%)
- **■**Multiyear electrodes:
 - LiMnPO₄ –LiCo_{1/3}Mn_{1/3}Ni_{1/3}O₂
 - Overcharge protection
 - Improved stability from decreased oxygen generation

Institut de recherche

Dual Materials and Multilayer Electrodes - Evaluation

Blended LiMnPO₄/LiCo_{1/3}Mn_{1/3}Ni_{1/3}O₂ has higher irreversible capacity than blended LiMnPO₄/LiMn₂O₄ cathode

Multilayer LiMnPO $_4$ /LiCo $_{1/3}$ Mn $_{1/3}$ Ni $_{1/3}$ O $_2$ has higher irreversible capacity than multilayer LiMnPO $_4$ / LiMn $_2$ O $_4$ cathode

Dual Materials Electrodes - Evaluation

Blended LiMnPO $_4$ /LiCo $_{1/3}$ Mn $_{1/3}$ Ni $_{1/3}$ O $_2$ has higher rate capability than blended LiMnPO $_4$ /LiMn $_2$ O $_4$ cathode

Multilayer Electrodes - Evaluation

 $\label{limpo4} LiMnPO_4/LiCo_{1/3}Mn_{1/3}Ni_{1/3}O_2 \ has \ higher \ capacity \ and \ rate \ capability \ than \ the \ multilayer \ LiMnPO_4/LiMn_2O_4 \ cathode$

The rate capability of the electrodes is comparable

Conclusion

- SNG12 was more strongly influenced by additives than OMAC:
 - o 1st CE improved to 93% when VEC is present, compared to 85% without additive.
 - o The reversible capacity of both graphites decreased with additives in the electrolyte.
- The cells showed good thermal performance from the ARC test (Sandia Lab.)
- High reversible capacity, with 84% 1st CE, was obtained with SiO_x anode by using WSB:
 - o 1118 mAh/g for pure SiO_x
 - o 816 mAh/g for SiO_x mixed with graphite.
- The SEI layer on the mixed SiO_x:graphite (1:1) anode was studied by ex-situ SEM.
 - o The breakdown of SiO_x particles initiated at 0.5 V during discharge, which results in capacity fade.
- Different synthesis routes of LiMnPO₄ were explored, and the hydrothermal method
- yielded the following results
 - o 67 mAh/g at 25°C for the 1st charge, but only 33% of Li was reversibly extracted.
 - o Better performance was obtained at 60°C due to higher ionic conductivity, and 85% Li was reversibly extracted.
- Overcharge protection was improved with dual-chemistry and multilayer cathode materials.

Activities for the Next Fiscal Year

- Continue evaluation of mixed graphite-SiO_x as an alternative anode
- **Examine the performance of other olivines, like LiMnPO**₄ with different synthesis method, as cathodes in Li-Ion cells
- Conduct in situ SEM studies of olivines obtained by molten-state synthesis
- Evaluate wet-milling technique to reduce particle size of LiMnPO₄
- Investigate dual oxide-olivine as a powder mixture or in multilayer structures in cathodes
- Complete high-rate performance and cycling with WSB alternatives anodes
- Investigate techniques to improve the conductivity of olivines such as $LiMnP_{1-x}V_xO_4$
- Evaluate dual oxide-olivine as mixed powders or multilayer structures in cathodes
- Continue supplying laminated electrode structures and powders to investigators in the BATT program
- Screen LiMPO₄ cathodes and SiO/graphite anodes by fabricating and testing 18650 cells and provide cells to investigators in the BATT program for evaluation.

